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Abstract—This paper addresses the economic impact of improving delivery performance in a serial
make-to-order supply chain when delivery performance is evaluated with respect to a delivery
window. Building on contemporary management theories that advocate variance reduction as the
critical step in improving the overall performance of a system, an expected cost model is
developed that financially quantifies the benefit of reducing delivery variance to the final customer
in a serial supply chain. The objective of the model is to determine the variance level that
minimizes the costs associated with untimely delivery (expected earliness and lateness) and the
investment cost required for reducing the delivery variance. A logarithmic investment function is
used and the model solution involves the minimization of a convex-concave total cost function.
Numerical examples are provided to illustrate the model and the solution procedure.
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1. INTRODUCTION

In today’s competitive business environment, customers
require dependable on-time delivery from their suppliers.
Recent empirical research has identified delivery performance
as a key management concern among supply chain practitioners
(see for example [1], [2], [3]). A conceptual framework for
defining delivery performance in supply chain management is
found in [4]. Within this framework, delivery performance is
classified as a strategic level supply chain performance
measure while delivery reliability is viewed as a tactical level
supply chain performance measure. The framework suggested
in [4] advocates that to be effective, supply chain management
tools, delivery performance and delivery reliability need to be
measured in financial (as well as non-financial) terms.
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Failure to quantify delivery performance in financial terms
presents both short-term and long-term difficulties. In the
short term, the buyer-supplier relationship may be negatively
impacted. A norm value of “presumed” performance is estab-
lished by default when delivery performance is not formally
measured [5]. This norm value stays constant with time and
is generally higher than the organization’s actual delivery
performance.

It has been demonstrated that supplier evaluation systems
have a positive impact on the buyer-supplier relationships,
with these relationships ultimately having a positive impact
on financial performance [6]. In the long term, failure to
measure supplier delivery performance in financial terms may
impede the capital budgeting process, which is necessary in
order to support the improvement of supplier operations
within a supply chain.

Delivery lead time is defined to be the elapsed time from the
receipt of an order by the originating supplier in the supply
chain to the receipt of the product ordered by the final customer
in the supply chain. Delivery lead time is composed of a series
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Figure 1. An n-stage serial supply chain

of internal (manufacturing and processing) activity times at
each stage plus the external (distribution and transportation)
lead times found at various stages of the supply chain.
Figure 1 illustrates the delivery lead time components of a
serial supply chain.

Early and late deliveries introduce waste in the form of
excess cost into the supply chain; early deliveries contribute
to excess inventory holding costs, while late deliveries may
contribute to production stoppages costs, lost sales and loss
of goodwill. To protect against untimely deliveries, supply
chain managers often inflate in process inventory levels and
production flow buffers. These actions can contribute to
excess operating costs [7].

A review of 50 delivery evaluation models identified several
shortcomings in modeling delivery performance [8]. These
concerns are three-fold. First, delivery performance measures
are not cost-based. Second, delivery performance measures
ignore variability. Third, delivery performance measures often
fail to take into account the penalties associated with both
early and late deliveries. The inability to translate delivery
performance into financial terms which incorporates uncer-
tainty as well as realistically quantifying delivery timeliness
(early as well as late delivery) hinders management’s ability
to justify capital investment for continuous improvement
programs to improve delivery performance. The current
research presented herein attempts to overcome these
limitations through the development of a cost-based model
that incorporates delivery variability and assigns penalties for
both early and late deliveries.

In this paper, we develop a cost-based performance metric
for evaluating delivery performance and reliability to the
final customer in a serial make-to-order supply chain that is
operating under a centralized management structure.
Contemporary management theories advocate the reduction
of variance as a key step in improving the performance of
a system [9], [10], [11]. In union with these prevailing the-
ories, delivery performance is modeled as a cost-based func-
tion of the delivery variance. The financial benefit of
reducing variability in delivery performance is demonstrated
by the model.

This paper is organized as follows. In Section 2, an analyti-
cal model based on the expected costs associated with untimely
delivery is developed and propositions are introduced to
analyze the model in terms of the variance. In Section 3,
improvement in delivery performance is modeled using a log-
arithmic investment function. The reduction of delivery
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variance is formulated as a mathematical optimization
problem that is characterized by a convex-concave total cost
function. A solution procedure is introduced and numerical
experiments are conducted. In the concluding section, we sum-
marize the findings of this research and present directions for
future research.

2. MODEL DEVELOPMENT

Consider an n-stage serial make-to-order supply chain operat-
ing under a centralized management structure where an activity
at each stage contributes to the overall delivery time to the final
customer. The activity at a given stage is defined to be the dur-
ation of time exhausted at that stage of the supply chain. The
duration of time experienced at a given stage may consist of
the manufacturing time to meet a lot size requirement, the
time to draw materials from an inventory to lot size require-
ments, or a combination of production and draw from
inventory.

The activity duration of stage i,W,, is represented by prob-
ability density function fiw(w, 6) that is reproductive under
addition with respect to parameter set 6. Delivery time to the
final customer, X = 3" | W,, is defined by the probability
density function fx(x,>_;_, 6;). We assume that activity dur-
ations at each stage of the supply chain are normally distributed
and independent. Normality and independence among stages is
often assumed in the literature [12], [13]. When activity times
at stage i are normally distributed and independent, delivery
time to the final customer is defined as a result of the n-fold
convolution of fw(w,8) which yields X ~ N(x; 30, u;,
Y i, vi) where u; and v; are the delivery mean and variance
for stage i, i € [1, n].

Delivery to the final customer is analyzed with regard to the
customer’s specification of delivery timeliness as defined by a
delivery window. Delivery windows are an effective tool for
modeling the expected costs associated with untimely delivery.
Several researchers advocate the use of delivery windows in
time-based manufacturing systems [14], [15], [16]. Metrics
based on delivery (order) windows capture the most important
aspect of the delivery process, which is reliability [17]. Under
the concept of a delivery window, the customer supplies an ear-
liest allowable delivery date and a latest allowable delivery
date. A delivery window is defined as the difference between
the earliest acceptable delivery date and the latest acceptable
delivery date. Within the delivery window, a delivery may be
classified as early, on-time, or late (see Figure 2). Delivery
lead time, X, is a random variable with probability density
function fx (x). The on-time portion of the delivery window
is defined by c; — ¢;. Ideally, ¢; — ¢; = 0. However, the
extent to which ¢; — ¢; > 0 may be measured in hours, days,
or weeks depending on the industrial situation.

This paper assumes the following: (1) delivery performance
is stable enough so that the modal delivery time is within the
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Legend:
a = carliest delivery time
¢, = beginning of on-time delivery
¢, = end of on-time delivery
b = latest acceptable delivery time

Figure 2. nlustration of delivery window

on-time portion of the delivery window, (2) the mean and
on-time portion of the delivery window remain fixed, and (3)
the coefficient of variation of X is less than 0.25. For situations
necessitating the need to truncate the normal density to prevent
nonnegative delivery times or select symmetrical and nonsym-
metrical density functions defined for only positive values of
the delivery time see [8], [18].

Consider an n-stage serial supply chain in operation over a
time horizon of length T years, where a demand requirement
of the final customer for a single product of D units will be
met with a constant delivery lot size Q. The expected penalty
cost per delivery period for untimely delivery, Y, is

Y=QH J:] (er — x)fx(x)dx + KJ

2

b

(x—ca)fx(x)dx (1)

where O = constant delivery lot size per cycle, H = inventory
holding cost per unit per time, K = penalty cost per time
unit late (levied by the final customer), a, b, c¢,, ¢c; = parameters
defining the delivery window W; = time duration of activity
=12 ..., n), fix) = fw,+w,+...+w, = density function
of delivery time X.

It is a common purchasing agreement practice to allow the
buyer (final customer) to charge suppliers for untimely deliv-
eries (see for example [19], [20]). Reductions in early deliv-
eries reduced inventory holding costs at Hewlett-Packard by
$9 million [21]. It has been reported in the automotive industry
Saturn levies fines of $500 per minute against suppliers who
cause production line stoppages [22] and that Chrysler fines
suppliers $32,000 per hour when an order is late [23]. The
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penalty cost in these cases is an opportunity cost due to lost pro-
duction. Purchasing managers often view the production dis-
ruptions caused by delivery stockouts to be more widespread
and more costly than the lost sales that stockouts cause [24].
Hence, K has been defined as an opportunity cost due to lost
production [22], [23].

Evaluating (1) under the defined assumptions yields the total
expected penalty cost (see Appendix A for derivation)

=0t [Vio( <) + - w2 (222) )|

e}a(52) o nlo-o(72)]
)

Proposition 1. The expected penalty cost is a monotonically
increasing non-convex function of the variance.

Proof. The first and second derivatives of Y with respect to the
variance are respectively

_ QHS((e1 = )/ VF) + K((e2 = )/vF)

Y'(v) 2

(3)

and

r) = 2 { 6(25E) (- w0}

+4VSL/2{¢(C2%)((02 - p)P - v)}. @)

|

Examining (3), the expected penalty cost is an increasing func-

tion of the variance since Y’(v) > 0 for positive values of Q, H,

K and v. Examining (4), we note that Y"(v) > 0 when
. 2 2 "

v <min{(c; — n)",(c2 — p)°}, but Y’(v) <0 when

v > max{(c, — w)?, (c2 — w)*}, hence the expected penalty
cost is not a convex function of the variance.

3. MODELING IMPROVEMENT IN DELIVERY
PERFORMANCE

Ideally the expected costs incurred for untimely delivery
should be equal to zero. This implies that, for the currently
defined delivery window, all deliveries are within the on-time
portion of the delivery window, and that waste in the form
of early and late deliveries has been eliminated from the
system.

For a fixed mean and delivery window, the expected penalty
cost can be reduced by reducing the variance of the delivery
distribution. Reducing the variance of delivery can be achieved
by initiating improvements such as: (i) gaining tighter control
over process flow times at downstream stages of the supply
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chain, (ii) enhanced coordination of freight transport, (iii) more
efficient material handling of inbound and outbound stock, and
(iv) improved communications among stages in the supply
chain such as implementing electronic data interchange
(EDI). Initiating such improvements requires capital invest-
ment (see for example, [25]).

An optimization model which considers the delivery var-
iance as a decision variable is defined. The objective of the
model is to determine the variance level that minimizes the
costs (expected earliness and lateness) associated with untimely
delivery and the investment cost required for reducing the
delivery variance.

The optimization problem is

Minimize G(v) = Y(v) + C(v) (5)
where v = variance of delivery distribution, Y(v) = expected
penalty cost due to untimely delivery, C(v) = investment
required for a delivery variance of v.

A logarithmic investment cost function is used to model
the cost of reducing the delivery variance. Under this invest-
ment function, reducing the delivery variance by a fixed
percentage requires a fixed amount of investment. This
functional form is appealing in that each additional reduction
in the delivery variance is more costly than the previous
reduction. The logarithmic investment function has been
widely adopted in the literature (see for example [26], [27],
[28D).

Let vo equal the current value of delivery variance and A rep-
resent the cost of reducing the delivery variance by & percent.
The investment function is then

A

C(v)= m[ln(vo) —In(v)] for0<v<vy. (6)

Proposition 2. The investment function is a decreasing convex
function of the delivery variance.

Proof. The first and second derivatives of (6) are

frox A
Cc'(v) = —m (M
and
S0 p— ®)

In(1/1 — h)2.

We observe that C'(v) <0 and C"(v) >0 for A >0 and
h>0. ]
The optimization model is
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Minimize
G(v) = QH [ﬁd:(c’\k”) +(c1—m) (‘D <C] \;;“))
e{o2) o)

A
+ W——}l) []l’l(V()) —_ ln(v)]

—

©)

Per Proposition 1, Y(v) is a convex function of the
. . 2 2
variance for v < min{(c; — )", (c2 — )’} and a concave
function when v > nzlax{(cl — w2 (e — )}

For min{(c; — w), (c2 — w)’} <v < max{(c,— w> (c2—
;1,)2} the convexity-concavity of Y(v) is parameter specific.
Hence, G(v) is the sum of a convex-concave function Y(v) and a
convex function C(v).

Theorem 1. G(v) is a convex function of the delivery variance
provided v < min{(c; — p)%, (c2 — p)*}.

Proof. For v < min{(c; — ;1.)2, (c2 — p.)z}, G(v) is the sum of
two convex functions (see Propositions 1 and 2) and is hence
convex. [ |

Corollary 1. G(v) is minimized at G*(v*) provided v* < v,.

Proof. Letv, = v < min{(c; — p)?, (c2 — w)}. Per Theorem
1, G(v) is a convex function of the delivery variance forv < v,,,
hence the solution of G'(v) = 0 yields an optimal solution if
v < vp. [ ]

The value of v* that minimizes G(v) at G* (v*) does not exist in
closed form and must be found by numerically solving
G'(v) = 0 for v = v*. Solving (10) for v takes the general form of

W[me(“;v“) + K¢(c2 e )] 2

V3 % ) Tma=my
—0. (10)
40004
GV
30004
Cost 2000 Yi)
1000 50
L Variance(v)
0 2 4 B 8

Figure 3. Optimal solution to numerical illustration with v < v,,
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TABLE 1
Summary of numerical examples with v > v,
Variance Reduction LINGO Solution
Number of
Width of Delivery Window Cost A Rate h Vin v G(®v) Iterations
2 Days $500 0.10 1.00 6.588 $11,277 135
500 0.15 1.00 3.239 8,861 139
650 0.10 1.00 10.520 12,513 133
650 0.15 1.00 4.925 10,342 136
3 Days 500 0.10 2.25 7.608 9,679 141
500 0.15 2.25 4.111 7,574 119
650 0.10 2.25 11.611 10,745 118
650 0.15 2.25 5.890 8,864 126
4 Days 500 0.10 4.00 8.881 8,323 131
500 0.15 4.00 5.163 6,532 132
650 0.10 4.00 13.009 9,120 132
650 0.15 4.00 7.076 7,634 125

Introducing ¢(z) = (1/v27) exp(—2z%/2) gives,

Vv lQH exp(- (c_,z—v_y,)_z) +K exp(— %):I

B 2AV27 3
In(1/(1 —h)(1 —h))

0. 1)

If the on-time portion of the delivery window is symmetric
then 6 = c; — u = —(c; — u) and (11) simplifies to

‘”[‘”“’(" 2_2)] i1/ ?Xi_’émm =0 12

A closed form solution for (12) is
82
V=
W.(8In(1/(1 — h))(QH + K)/2AV2m)*

(13)

where W, is the Lambert W function. The Lambert W function
is used to obtain closed form solutions for functional equations
that involve exponentials. The Lambert W is described in detail
in [29] and is found in standard optimization software packages
such as Maple [30].

Numerical Examples

Consider a supply chain where delivery time (in days) to the
final customer is normally distributed with a mean of 50 and
variance of 10. The on-time portion of the delivery window
is defined by ¢; =48 and ¢, = 53. For these parameters
v, = 4 and vy = 10. Additional parameters for the expected
penalty cost model are: Q = 500, H = $10 and K = $5,000.
Under the logarithmic form of the investment function, a cost
of A = $150 is incurred for every h = 10% reduction in the
delivery variance. Solving (9) for v yields v = 3.253. Per

Corollary 1 of Theorem 1, v=3.253 <y, =4, hence
v =v* = 3.253 and G*(v*) = $2387 (see Figure 3).

When v > max{(c) — u)%, (c2 — »)*}, minimizing G(v)
requires the minimization of the sum of a concave function
Y(v) and a convex function C(v). There is no guarantee that
solving G'(v) = 0 will yield the optimal value of the variance.
Detailed numerical analyzes (see [18]) have indicated that non-
convexity in the expected penalty cost term Y(v) when
v > max{(c; — w)?, (c; — w)*} is very slight and that very
good solutions to the minimization of G(v) can be obtained
using commercially available optimization software such as
LINGO [31].

The results of twelve sample problems solved using LINGO
are presented in Table 1. The on-time portion of the delivery
window was varied from 2 days (one day early, one day late)
to 4 days (two days early, three days late) when the delivery dis-
tribution to the final customer was normally distributed with a
mean of 50 and a variance of 20. For these parameters
vm = 1.00, 2.25, and 4.00 and vo = 20. Under the logarithmic
form of the investment function, variance improvement costs of
A = $500 and $650 were studied with variance reduction rates

13000

120001

L=$500, h=0.10
11000 1
=$650,h=0.15

10000

-

© op0pd L=s500h=01s
8000

7000

6000

2 3 4
Width of On-Time Portion of Delivery Window.

Figure 4. Sensitivity of solutions to model parameters
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of h=10% and 15%. Additional parameters used were:
Q0 =500, H=3%10 and K = $5,000. All solutions were
obtained in less than 0.01 seconds. The sensitivity of the sol-
utions to the width of the on-time portion of the delivery
window, variance improvement cost and variance reduction
rate is illustrated in Figure 4.

4. CONCLUSIONS

This paper addressed one aspect of supply chain planning by
modeling delivery performance to the final customer in a
serial make-to-order supply chain from the contemporary per-
spective of reducing delivery variability. A cost-based model
has been presented that financially evaluates the effects of redu-
cing delivery variability on overall delivery performance. The
model was demonstrated under a logarithmic investment func-
tion and a framework for determining optimal and near optimal
levels of delivery variance was developed. As demonstrated
through a numerical example, the results of this modeling
may prove useful to justifying the investment required to
reduce delivery variance to a targeted goal as a part of an
overall continuous improvement program to improve supply
chain operating performance.

There are several aspects of this research that could be
expanded. First, the assumption of independence of the activity
times among the stages could be investigated. Second, an
industrial case study utilizing the model developed herein
could be conducted. Third, the model could be generalizing
by introducing probability density functions other than the
normal to model activity times at various stages of the supply
chain. Fourth, this paper addressed the case of make-to-order,
and therefore the model presented herein may be extended to
the case of make-to-stock by adding an inventory component.
Lastly, the scope of the model could be expanded by allowing
disruptions in the variance reduction process.
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APPENDIX A. DERIVATION OF EXPECTED PENALTY
COST (EQUATION 2)

The density function of delivery time X with mean p and var-
iance v, is the convolution of the normally distributed lead time
components W;(i = 1,2,...n),fx(x) = fw,+w,+--+w,. If an ear-
liest delivery time (a) and latest acceptable delivery time (b) are
imposed on fx(x), then

(A1)
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and (1) is

b
(x - Cz)hx(x)dx.

Cy

Y= QHJ (A2)

a

(c1 — x)hx(x)dx + KJ

€2

Examining (A.2), we observe that Y is separable in terms of
the expected earliness cost and the expected lateness cost.

Expected Lateness Cost
The expected penalty cost for late delivery is

b
Vie = g] (¢ — c2)fi(x)dx

2

(A3)

where

(A4)

b ¢ —(x—p)’
—J \/22_exp{ x2 K }dx]. (A.5)
fors wmv v

Substituting z = (x — u)/\/v,x = /vz + u, and dx = \/vdz
into (A.5) and simplifying yields,

K (b—pm)/ V¥ z 5
Yige = — VJ(Q—,L)/\/UECXP{_Z /2}dz
(b-m)/ Vv )
+(p.—cz)ch_m/ﬁ mexp{—z /2}dz]. (A.6)

Introducing ¢(-) and P(-) as the standard normal
density (ordinate) and cumulative distribution functions
respectively, and recognizing that for the standard normal

that[;” 7f (z) = ¢(w), gives

() - () vo(e(*7)
)l
<)

Expected Earliness Cost
Repeating the steps outlined in (A.3 — A.7) for the expected ear-
liness cost

Yiae =

(A7)

Yearly = Q’TH JCI (Cl - x)fX(x)dx (A8)

a
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yields
OH

Veary = | ) -(=) [‘/; (d’ (01%) B ¢(a—\}vﬂ))

a-n () -+(72)]

(A.9)

Negative values for the normal distribution are
negligible  provided w>4,/y, hence we  set
b=p+4ky and b=p+4V. This  implies

#((a—w)/VV)=¢((b— p)/v»)=0,9((a— pn)//v) 0.0
and O((b—pu)//v)21.0.
Combining (A.7) and (A.9) and simplifying gives

v oo 27) - (o(27) )

sef(o2) o -n(1-o(232)]
(A.10)
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